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Synchronizing chaotic dynamics with uncertainties based on a sliding mode control design
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The synchronization of two chaotic systems with uncertainties is studied in this paper. A feedback controller
is provided based on a sliding mode control design. A kind of extended state observer is used to compensate
for the systems’ uncertainties, such as the structure difference or parameter mismatching, using only the
available synchronizing error. Then the feedback controller becomes physically realizable based on the states
of the observer, and can be used to synchronize two continuous chaotic systems. lllustrative examples of the
synchronization of Duffing and Van der Pol oscillators as well as two Lorenz systems with parameter mis-
matching are proposed to show the effectiveness of this method.
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[. INTRODUCTION so much structure information of the transmitter and receiver.
In this paper, we first get a feedback controller based on

In the last decade, chaos synchronization has become siding mode control design. To make the controller physi-
popular research topic arousing interests of physical scierfally realizable, an extended state obse&80(7,11,12)
tists and electrical engineeffl,2], and references therdin is used to estimate system information, such as unmeasurable
Such synchronization strategies have potential applicationgtates or model differences, so that the complex control can
in several areas such as secure communicdfi2jg], and be translated into reality with less system information.
references there]nbiological oscillator§4] and animal gaits This paper is organized as follows. In Sec. I, the synchro-
[5]. It has been shown that two identical chaotic oscillatorshization problem is stated simply. In Sec. IIl, the sliding
can be synchronizefil]. However, most of the dynamical mode control design is used to synchronize two chaotic sys-
systems have modébr parametrit uncertainties. To avoid tems with uncertainties. We present some simulation results
this problem, some strategies have been recently reportdd Sec. IV. Finally, we give some concluding remarks in
[[3,6], and references therdinin particular, several authors Se€c. V.
have reported adaptively estimation techniqiés These
techniques present an acceptable performance and allow syn- |I. SYNCHRONIZATION OF CHAOTIC SYSTEMS
chronization, although the parameters are not known or they WITH UNCERTAINTIES
are time varyind7]. But the only drawback of these strate- ) )
gies is that the structure of parameters for a given model L€t the chaotic master system be given by the equédipn
must be known. This requirement often leads to very com- _
plex feedback schemé¢8,6,7]. Although the structure of the X=F(X,p), ym=CuX, (1)
parameters can be known in some cases, it would be desir-
able to have a scheme to achieve synchronization even if thghereX e R” is state vector of the master systep R” is
slave oscillator has little prior knowledge about the maste parameter vector, and the functiéhR"XR"—R" is a
systems. Moreover, in many real systems, the synchronizemooth vector fieldy,, € R is the output systenimeasured
tion is carried out even though the oscillators are differentstate. Cy, is a vector of proper length that defines the output
For example, biological oscillators are often synchronoushannel.
even when the master and slave systems are quite different Let us now take a chaotic dynamical system of the same
[[7] and references therdinConsequently, the synchroniza- order as that of Eq1),
tion of systems with uncertainties, such as different model or
parameter mismatching, may play an important role in many Y=G(Y,p’)+Bu, ys=C,Y, 2
fields, including chaotic secure communication.

The aim of this paper is to study the synchronization ofwhereY e R” denotes the state vector of the slave system,
chaotic systems with uncertainties based on a sliding mode’ € R” is a parameter vectoB is a vector of suitable size
control design. Sliding mode control is a nonlinear controlthat defines the control channel, ane R is the control
strategy requiring1) a switching manifold that prescribes command. The vectdE, defines the measurable state of the
the desired dynamics an@) a control law such that the slave system. Without loss of generality, we can assume that
system trajectory first reaches the manifold and then stays dhe measurable state is given Y=y, that is, onlyx; and
it forever[8,9]. Yua, Chen, and Chen proposed a method toy; are available in receiver. So we can assume gt
control chaotic system based on the sliding mode contro=Cs=(1,0,...,0). This is realistic because in most cases only
design[9]. Liao used variable structure control design toone state is available for feedback from the codinstey
control and synchronize a kind of discrete-time chaotic sysas well as decodingslave circuit.
tems[10]. But system uncertainties were never discussed and From the control theory viewpoint, the synchronization
the controller in Ref[10] is not realizable because it needs problem can be seen as followg]: define E as E
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=(e,...8) =(Y1—X1,...¥n—%)". Then the following system  Ill. THE APPLICATION OF SLIDING MODE CONTROL
describes the dynamics of the synchronization error: DESIGN IN CHAOTIC SYNCHRONIZATION
E=G(Y p')—F(X,p)+Bu, y=e 3) For the synchronizing error systetf), we have two as-
- ) 1 I —C1-

sumptionsi(1) only z; is measurable an(?) A(-) is uncer-

In this way, the synchronization problem can be seen as th&in- The first assumption is realistic. For instance, in the
stabilization of Eq.(3) at the origin. In other words, the S€CUreé communication case, only the transmitted signgl (
problem is to find a feedback control lau(t) such that and receiver signaly() are available for feedback_ from
lim E—0 (which implies thatY—X) ast—. It has been me_asuremgnt&ll]. Concerning the_seco_nd assumption, we
shown that it is easy to get a kind aft) to guarantee the claim that_lt is a general and pra_lctlc_al situation because the
synchronization wherf=G, p=p’ [1]. Our goal in this termA(-) involves the uncertainties in the master as well as
paper is to design a propeft) to achieve the synchroniza- slave system. The_sources of suqh_ uncertainties could be pa-
tion without this condition. rameter mismatching, unknown initial conditions, or struc-
tural differences between models of master and slave sys-
tems[13].

The aim of synchronization under these assumptions is to
design a physically realizable controllarto achieve ling;
z=7.,, 1<isp—1, z,=A(ZV)+u, —0,i =1_,2,...n. Using the concept of extended systems, the

standardized state-space equation of the error Jiate$5)]
can be obtained as

First, let us define the invertible change of coordinates
=®(E) such that the error syste(B) can be written in the
following canonical form,

Vi=&(Z,V), p<jsn, psny=e¢(Z\V). (4)
It has been noted that several systems subjected to chaotid ~ Zi+1  ISISN=L Z0=2n4, Z”“_:(Z’U)H(Jé)
synchronization can be transformed into the canonical form
(4) [7,12). For example, the Lorenz dynamical can be transyhere
formed into the canonical form with a relative degrpe
<n. And nonautonomous second-order chaotic system such n-1
as the Duffing oscillator can be written as the canonical form  E(-)= 2, Zk: 1 AC)+ (A(-) +U)dpA(-), dA(-)
with p=n [7]. K=t
The following must be notedi) if p=n, the transformed =0Aldz), k=1,2,..n.
system(4) is the so-called fully linearizable nonlinear sys-
tem, and(ii) if p<n, the system(4) is called a partially Here we lump the systems’ uncertain informatidfy) into a
linearizable nonlinear system. In addition, if the dynamicalnew statez, ;. According to sliding mode control design,
subsystenV; = £(0V) is asymptotically stable, we say that the sliding surface is defined &%4]
the system4) is minimum phasé7]. The two kinds are as

n+1
follows.

t
S:Zn+l_20(n+l)+f Z CJZ|dt:0, (7)
(1) p=n (such as Duffing oscillatoys Equation(4) has 0j=1

the following canonical formz;=e;=y; —X;): wherezy(,. 1) is the initial state ofz,,,. Equation(7) can

Z=7,1, 1<i=n—1,... z,=AZ)+u, y=¢(2),() also be formulated as
5 n+1

whereA(-) represents systems’ structure information. Zn+1= 121 Ci4 ®)
(2) p<n (such as Chua’s and Lorenz systems
with the initial conditionz,,,(0)=2y(+1). Therefore the

Now the synchronizing error system cannot be trans'sliding mode dynamicsthe desired dynamigscan be de-
formed into the form as Ed5). But several chaotic systems . ined as

are so-called minimum phase, that is, the zero dynamics

£(0,V) converges to an attractor. In other words, the closed n+1

system is internally stablgr,11,13. From the control view- 7=z, 1<isn, z,,,=—2, Ciz. 9
point this is a strong assumption. But this is reasonable for =1

the boundness of chaotic attractor in state space and the in- ) ) .

teraction of all the trajectories inside the attractor. So wherPr in @ matrix equation form asZ=AZ, where Z
we have taken actions to achieve g0, i=1,2,...p, the =(z1,.-Zns 1),

part £(Z,V)— &(0,V)—0 asymptotically for the so-called

minimum-phase charactéee Appendix A for an illustrative 0 0 0

example. This is why in many cases, we only need to syn- 0 1

chronize one or part of states and the others will be synchro- A= . . . : (10
nized automatically. So we only consider the conditiorpof ) ’ ’

=n. —C; —C; **r r —Cgiq
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initial states being(0)=[z,(0),...z,+1(0)]".

The design ofc;, j=1,..n+1 can be determined by
choosing the eigenvalues @éf such that the corresponding

characteristic ~ polynomial n+l

+Cpy 18"+ -+ cq is Hurwitz.

equation: p(n+1)=s

According to sliding mode control design, we use the

reaching law introduced by Gast al. as [15]

S=aS-Bsgn), (11)

where O< a<1. sgn{) denotes the signum function and the
switching gainB>0 is determined such that the sliding con-

dition is satisfied and sliding mode motion will occur.
From Eq.(7) and Eq.(11), it can be found that

n+1

aS—BsgnS)=2,,1+ ;21 ¢z, (12)

or, alternatively

n+1

Zy1=E(Z,p,u)+U= aS—Bsgr(S)—le czj. (13

So the differential equation of control signais

n+1

U=aS—BsgnS)— ;1 czi—E(Z,pu), (14

which results in

)

n+1
aS—BsgnS)— >, ¢;jzj—E(Z,n,u)|dt.
=1
(15

In general, the initial state of the controlis zero. Here a
large B is important for the realization of synchronization,
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lead toV<0. Here we get the same conclusion as th48in

In many situations, conditonV<0 can be satisfied by
choosing a large enough switching ganlf system uncer-
tainties can be estimated more accurately, then the resulting
control input will be more accurafe].

From Egs.(7) and (15), we know the control law is not
physically realizable because it requires the measurement of
the statez,, i=1,...n (that is, the measurement ¥{fY) and
the system structure informaticf(-), which is a very strin-
gent demand for the literature of chaotic secure communica-
tion. In order to increase the security of communication, the
least possible information about the transmitter should be
contained in the communication channel. In this paper, we
assume that only, is available in receiver, that is, ongy is
measurable and(-), which represents the structure informa-
tion, is uncertain. So a special way must be used to estimate
E(-) andz, i=2,..n based on the available sign@, in
this paper to make the controller§7) and (15 physically
realizable. Based on the extended state observer th&bly
excavating information wrapped in measurable synchroniz-
ing error (z,), we use the following ESO to solve this prob-
lem:

21=2i11— O1h1(2,—21), 1sisn—-1, 2,=2,,

—O0ndn(21—21),  Zy11= — Oni1dn1(Zi—20).
(18

Defining the estimating error asv;=2,—2;, w,=2,

—Zy,. s @0n11=2n+ 1~ Zn+ 1, We get the following system:

0= 1~ 0idi(e), 1lsisn—1, o,=wy

+ O0ndn(€1), ©ne1= —-E()- Ons1Pns1(€1)

(19

which is associated with the system information of the two ) ]
chaotic systems. We can qualitatively analyze this questiof@SSUmeu=0). Appropriately choosing paramete and

with Lyapunov theory as follows.
Substituting control law14) into the extended syste(6),
the closed-loop system dynamical can be described as

Zi=2z 1, 1<i=n—-1, z,=z,,1,
n+1
'zn+1=aS—/asgr(s:)—;l ¢z, (16)

Define the Lyapunov function ag=3%S?, then its first de-

rivative with respect to time is
n+1
V: S( 2n+1+ 2 Cjzj)
j=1

= aS-Bsgn9)]
=aS’— BabgS)<abgS)[abyS)—-B]. (17

From Eq. (7), we know that S=L(z;,...,Zh41)

function ¢;(-) (i=1,...n+1), w, will be stabilized at zero.
ThenZ=(2,,...,2,) andz,,, will converge toz; ,i=1,...n
and Z(-), respectively. Here we choose the following form
[112]:

6i=L'\i, ¢i(2,—z1)=[abs2,—2,))Psgn(2,—2zy),

p>0, i=12,.n, (20)

wherelL is the so-called high-gain parameter, which can be
interpreted as the uncertainties estimation rate and often be
chosen as a constafit,11]. In order to determine\;, we
define the variables,

v=L"[abs(2,—2,)|Psgnz,—z),
y=L""1"Y(2 -2z, 1<i=n,

Vn+1=(Zny1—Znsa)-

=M(ey,...,n) =N(X,Y). For the boundness of chaotic at- Notice thatv;=L"[aby(2;—2z;)sgn&—2z)1(z1—z), where

tractor, we know thaSis bounded. So a large enoughwill

superscript[-] means first derivative of time. From the
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boundness of chaotic attractor, we know thais bounded. IV. NUMERICAL STUDIES
In order to achieve the tracking @i, z; must be bounded
too. So we can conclude thaabs(z,—z;)sgng—2z))] is
bounded. Without loss of generality, assuming its upper limit In this section, the synchronization of Duffing and Van
is x, which can be chosen as a large enough number, then v@er Pol oscillator is presented to show the effectiveness of

. "5 - o 6 At at this design mentioned above.
etv;<L"x(z;—2;). So we have the following “estimatin : . .
grrol;%’ syst)((agn'l J g g The two order master Duffing system is described as fol-

A. Synchronization of two strictly different systems

lows:
lL):LT(X,)\l,...,)\n_'_l)U'f‘Q(‘), (21) )'(1:)(21
Where?=(v1,...,vn+1)T, Q():[O,O,E]T, and T iS as ).(2:1.8(1_0.1X2_X31+ 11CO$04I) (25)
follows:
_ The same order slave system Van der [@dloscillator is
—Nix X as follows:
-\, 0 1 0 .
Y1=Y2,
T(X,)\,...,)\nJril): . . . .
X, 0 0 - 1 Vo,=—0.1(1-y;)y,—y;°+0.3co$1.0t)+u, (26)
[ ~App2 00O whereu is the controller needed to be chosen. From Egs.

(22 (25 and (26), the synchronizing error dynamicaly{

. . . —X1,Y2—X») can be described as the canonical form
After choosingy according to experience, we choose the

constants,;, 1<i=n+1 in such a way that(-) has all its e,=6,,6,=0+u, (27)
eigenvalues in the left-half complex plane. Sin¢& belong

to some chaotic attractor, thek(-) in Eq. (5) is a bounded where 0=-0.1(1-y;)y,—y;°+0.3cos(1.0) — 1.8,
function. Hence=Z(+) also is bounded function. After choos- +0.1x,+x3;— 1.1 cos(0.) contains two systems’ model
ing proper\;, 1<i=n+1 so that all eigenvalues di(-) difference, which is unknown to us. So the extended state
are located in left-half complex plane, we can conclude thabbserver{Eq. (18)] can be described in the following form
limv;—0, 1<i<n+1[7,11,13. That is, the “estimating er- [2:(21,22,23)@

ror” systemu is globally asymptotically stable at zero, which

implies thatz;—z;, 1<i<n+1. So we can get the infor- 7,=2,— L\ (abs(2,—2,))Psgn(z,—z,),
mation of unmeasurable state fraip, 1<i<n and model
uncertainties fronz,, ;. Note that in Eq(18), z,,, repre- 2,=73— L2\ y(abs(2;—2,))Psgnz,— z;), (28)

sents the system model uncertainti€é ), so z,,, in Eq.
E)15) is equal toA(-)+u=2,,,+u. Then Egs(7) and (15 .= —L3\s(abs(2,—2,))P sgnz,— 2,),
ecome

where 2; represents the structure differen@ Hence the
sliding control law(23) and (24) can be described as

. n
]
S=2n+1+U~2(n+1)+fo j;j_ C121+Cn+1('zn+1+u) dt,
t
(23 s=23+u—'z3(0)+f [Ca(Zs+ U)+ Co2p+Cy2,]dt,
n

(29

U(t)=f;[a8—ﬂsgd8)—[j21 ¢+ Cosa(Znsat ) |
u(t)= fa[aS—ﬁsgr(8>—[c3<23+u>+czzz+c121]

—*an] dt. (249) .
—Z,]dt. (30)

Notice that control law23) and(24) only use the estimation Here we randomly choose the systems’ initial condition
of structure informatioriby means o#,, ;) andZ, which are  (0.3,0.5, (1,0.6) for Duffing and Van der Pol, respectively.
provided by estimatof18). And the dynamical compensator The initial condition for ¢;,2,,23) is randomly chosen &8,

(18) only uses the measurable synchronizing efegrin this 0, 0.5. The initial condition for Eq.(29) is S(0)=0 and
papej. So Egs.(23) and (24) neglect the system uncertain- u(0)=0 for Eq. (30). Here we choosg =4. According to

ties and are more physically realizable than Eg@sand(15)  the parameter-choosing scheme mentioned above, we choose
do. After the complete synchronization of two systems, manyarameters as follows: the switching gair=0.1, 5=0.4,

ways can be used to transmit information, such as additivéhe parameter foc;,i=1,2,3 is agc3,c,,c;1]=[165,65,3

signal masking17], inverse system maskin¢SM) [18], and  then engivalues ofA in Eq. (10) are —2.5814, —0.2093

SO on. +7.9924, the high gain isL=10, the parameter ok,i
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=1,2,3 is[N1,A2,N3]=[1,2,3] so that engivalues of matrix mode motion will occur, which guarantees the synchroniza-

(22) are —2.6850,—0.6575+2.0092, andp=0.5. The con- tion and signal demodulation. Figuréd]l shows that syn-

trol was activated at= 2. We use the simulink afiaTLAB5.3  chronization is not achieved wheg=0.01 and other param-

to carry out this numeric simulation. Figuregaland 1b) eters are the same as above. In the simulation we found that

show the simulation result. the largerg is, the better the synchronization and signal de-
After the synchronization of transmitter and receiver, wemodulation. But to find out whether there exists quantitative

can use many ways to transmit informatifi7,18, and relation between them needs further work.

references therelnHere we use ISM to discuss it simply.

We add information to the right-hand side xf. Then the B. Synchronization of systems with parameter mismatching

second function of Eq25) is ] ) o
In this section, we study the synchronization of two Lo-

Xp=1.8,—0.1x,— X3 +1i4(t), (31)  renz systems with parameter mismatching. For two Lorenz
systemsX; = (X1.2,Y12,My 2" as follows:

wherei(t) is the signal to be transmitted. Here we choose
i,(t)=1.1cos(0.4) simply. According to ISM 18], we have X127 01127 X192, Y1271, X12~ Y12~ X1 0M 2,
the demodulator as
(1) =3 — 1.8¢ + 0.1+, (32 MZ=Xa e Y1t 39
where subscript 1 means the transmitter and 2 receiver.
¢ are system parameters. Contolis added on the right-
hand side ok,. So we get the following synchronizing error
system

wherei,(t) is the demodulated signal. After the synchroni-
zation of the two systems, we know thgt=Xx, andx, is the
driving signal that is available at the receiver side. So the
demodulator(32) can be described as the realizable form

() =Y~ 1.8+ 0.1y, + x5 (33 e =Af +u, e=Af,, e3=Af;, (35)

The simulation result is shown in Fig(d, which reveals the where AF=(Af;,Af,,Af;) denotes the uncertainties of
good demodulation. From E@17) we know that large8 is  these two system@arameter mismatchingSo the canoni-
needed so that the sliding condition is satisfied and slidingal form[Eq. (4)] can be described as

e — fﬂ Jo, . =k

10‘ ILM « o M’ ” M ‘W\ﬁm M‘MM\} ( FIG.)2. Si_mula(tti)c)m( resul;s(.a)
if,1 i { tunfithing X1—X5) VS time; , VS
°1}W {\( \” N © { J\\\‘ \ \] J j tinie; (<2:) (my,m,) vs tir)1/11e.y2

-10 20 ]
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z2,=7, p=E(z,9.u), V=¢(z,V), (36) for.syn.chropizi_r?g two chaotic systems wi;h qncertainties,
which is significant for secure communication. Further
wherez,=c;, V=(e;,e3), p=1. It is easy to see that sub- works, such as the quantitative relationship betwegf and
systemé&(0,V) is the so-called minimum-phase. Let us as-Synchronization performance, the use of this scheme in com-
sume thak; is the driving signal, sa; is measurable. Then Mmunication and so on, are going on.
we get the extended state obseriq. (18)] as the follow-

ing form[2=(2,,2,)"]: ACKNOWLEDGMENT
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Z;=—L N\ [abs(z;—25) P sgn(z;—zy), (37
wherez, represents the uncertainyf ;. So the sliding con- APPENDIX A:  INTERNAL STABILITY OF THE
trol law [Egs.(23) and(24)] can be described as SYNCHRONIZING ERROR SYSTEM OF TWO
LORENZ SYSTEMS
t
S= 22+u_22(o)+J [Ca(Zo+U)+cq2,]dt, (38) Let us consider the two Lorenz systems as follows:
0
X12=0(Y127X12), Y127 X127 Y12~ X1,0M1 2,
t .
U(t): fo[aS—BSgF(S)—{CZ(ZZ-i— u)+0121}—22]dt. m1,2:X1,2Y1,2_ d/ml,Zi (Al)
(39

where subscript 1 represents the master system, and 2 the

Here we choose initial conditio8(0)=0, u(0)=0. Initial  Slave. The control is added tq. The synchronizing error
condition for the two Lorenz systems af@.4,0,0 and dynamical is as followse;=X;—X;; €=y1—Y2; €=M

(0.5,0.87,1.1 Initial condition for @;,2,) is randomly cho- —my):
sen as(0,0.5. Let y=4, L=10, p=0.5,[c4,c5]|=[56,4], D o B _
[N1\>]=[1,2], «=0, B=0.3, ando,=10, B,=8/3, r; 2;=0(-)+U,01=rZ1- 012103, V=201~ YU2,

=50, 0,=9, B,=8.5/3,r,=52. In order to strengthen the —s (A2)
effect of control, we use’=10u instead ofu in this simu- y=a,
lation. The control was activated & 2. Simulation results  wherez,=e;, V=(v;,0,)7=(e,,35)", p=1. So we get
are shown in Fig. 2.
V=AV+BS, (A3)
V. CONCLUSIONS

. - . where
In this paper, a sliding mode control for synchronizing

chaotic systems with uncertainties is proposed. Based on a -1 -z r
rigorous mathematical analysis and Lyapunov stability A—{ 0 Bz{o
theory, a sliding mode controller is designed such that two & 4

chaotic systems with uncertainties can be synchronized. T, o i ; .
make this control physically reliable, a kind of extended statepor Lorenz system, the following inequation is satisfie}
observer is used to estimate the systems’ model difference X2 +y2()+[m(t) —r—o’<(c+r)?K?,  (Ad)

and the immeasurable states based on the measurable syn-

chronizing error. Duffing and Van der Pol oscillators and twowhereK?= 1 + (¢/4)max@1,1), soz, is bounded. For ap-
Lorenz systems were used as examples to verify and visuapropriate parametep such thatA has all its eigenvalue in the

ize this strategy. Simulation results demonstrate that the prdeft-half complex plane, then EqA3) is asymptotically
posed design is able to achieve the synchronization of twatable, that is&(0,V) converges to an attractor. For other
chaotic systems of the same order with little system informachaotic systems, such as Chua’s circuit, etc., because of the
tion. Both analysis and simulations reveal that the proposedharacter of chaotic attractor, we can draw the same
sliding mode control design and the ESO have great potentialonclusion.
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