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Synchronizing chaotic dynamics with uncertainties based on a sliding mode control design

Tao Yang and Hui He Shao
Department of Automation, Shanghai Jiao Tong University, Shanghai 200030, China

~Received 22 February 2001; revised manuscript received 12 June 2001; published 2 April 2002!

The synchronization of two chaotic systems with uncertainties is studied in this paper. A feedback controller
is provided based on a sliding mode control design. A kind of extended state observer is used to compensate
for the systems’ uncertainties, such as the structure difference or parameter mismatching, using only the
available synchronizing error. Then the feedback controller becomes physically realizable based on the states
of the observer, and can be used to synchronize two continuous chaotic systems. Illustrative examples of the
synchronization of Duffing and Van der Pol oscillators as well as two Lorenz systems with parameter mis-
matching are proposed to show the effectiveness of this method.
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I. INTRODUCTION

In the last decade, chaos synchronization has becom
popular research topic arousing interests of physical sc
tists and electrical engineers@@1,2#, and references therein#.
Such synchronization strategies have potential applicat
in several areas such as secure communication@@2,3#, and
references therein#, biological oscillators@4# and animal gaits
@5#. It has been shown that two identical chaotic oscillat
can be synchronized@1#. However, most of the dynamica
systems have model~or parametric! uncertainties. To avoid
this problem, some strategies have been recently repo
@@3,6#, and references therein#. In particular, several author
have reported adaptively estimation techniques@6#. These
techniques present an acceptable performance and allow
chronization, although the parameters are not known or t
are time varying@7#. But the only drawback of these strat
gies is that the structure of parameters for a given mo
must be known. This requirement often leads to very co
plex feedback schemes@3,6,7#. Although the structure of the
parameters can be known in some cases, it would be d
able to have a scheme to achieve synchronization even i
slave oscillator has little prior knowledge about the mas
systems. Moreover, in many real systems, the synchron
tion is carried out even though the oscillators are differe
For example, biological oscillators are often synchrono
even when the master and slave systems are quite diffe
@@7# and references therein#. Consequently, the synchroniza
tion of systems with uncertainties, such as different mode
parameter mismatching, may play an important role in ma
fields, including chaotic secure communication.

The aim of this paper is to study the synchronization
chaotic systems with uncertainties based on a sliding m
control design. Sliding mode control is a nonlinear cont
strategy requiring~1! a switching manifold that prescribe
the desired dynamics and~2! a control law such that the
system trajectory first reaches the manifold and then stay
it forever @8,9#. Yua, Chen, and Chen proposed a method
control chaotic system based on the sliding mode con
design @9#. Liao used variable structure control design
control and synchronize a kind of discrete-time chaotic s
tems@10#. But system uncertainties were never discussed
the controller in Ref.@10# is not realizable because it nee
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so much structure information of the transmitter and receiv
In this paper, we first get a feedback controller based
sliding mode control design. To make the controller phy
cally realizable, an extended state observer~ESO @7,11,12#!
is used to estimate system information, such as unmeasu
states or model differences, so that the complex control
be translated into reality with less system information.

This paper is organized as follows. In Sec. II, the synch
nization problem is stated simply. In Sec. III, the slidin
mode control design is used to synchronize two chaotic s
tems with uncertainties. We present some simulation res
in Sec. IV. Finally, we give some concluding remarks
Sec. V.

II. SYNCHRONIZATION OF CHAOTIC SYSTEMS
WITH UNCERTAINTIES

Let the chaotic master system be given by the equation@7#

Ẋ5F~X,p!, yM5CMX, ~1!

whereXPR9 is state vector of the master system,pPR- is
a parameter vector, and the functionF:R93R-→R9 is a
smooth vector field.yMPR is the output system~measured
state!. CM is a vector of proper length that defines the outp
channel.

Let us now take a chaotic dynamical system of the sa
order as that of Eq.~1!,

Y5G~Y,p8!1Bu, ys5C,Y, ~2!

whereYPR9 denotes the state vector of the slave syste
p8PR- is a parameter vector,B is a vector of suitable size
that defines the control channel, anduPR is the control
command. The vectorC, defines the measurable state of t
slave system. Without loss of generality, we can assume
the measurable state is given byys5y1 , that is, onlyx1 and
y1 are available in receiver. So we can assume thatCM
5Cs5(1,0,...,0). This is realistic because in most cases o
one state is available for feedback from the coding~master!
as well as decoding~slave! circuit.

From the control theory viewpoint, the synchronizatio
problem can be seen as follows@7#: define E as E
©2002 The American Physical Society10-1



t

-

s

ao
rm

ns

u
rm

s-

ca
t

ns
s
ic

se

fo
e
e

n
hr
f

the

e
the
as
pa-

c-
sys-

s to

the

,

TAO YANG AND HUI HE SHAO PHYSICAL REVIEW E 65 046210
5(e1,...,en)
r5(y12x1,...,yn2xn)

r. Then the following system
describes the dynamics of the synchronization error:

Ė5G~Y,p8!2F~X,p!1Bu, y5e1 . ~3!

In this way, the synchronization problem can be seen as
stabilization of Eq.~3! at the origin. In other words, the
problem is to find a feedback control lawu(t) such that
lim E→0 ~which implies thatY→X! as t→`. It has been
shown that it is easy to get a kind ofu(t) to guarantee the
synchronization whenF5G, p5p8 @1#. Our goal in this
paper is to design a properu(t) to achieve the synchroniza
tion without this condition.

First, let us define the invertible change of coordinateŻ
5F(E) such that the error system~3! can be written in the
following canonical form,

żi5zj 11 , 1< i<r21, żr5A~Z,V!1u,

V̇j5j~Z,V!, r< j <n, r<n,y5w~Z,V!. ~4!

It has been noted that several systems subjected to ch
synchronization can be transformed into the canonical fo
~4! @7,12#. For example, the Lorenz dynamical can be tra
formed into the canonical form with a relative degreer
,n. And nonautonomous second-order chaotic system s
as the Duffing oscillator can be written as the canonical fo
with r5n @7#.

The following must be noted:~i! if r5n, the transformed
system~4! is the so-called fully linearizable nonlinear sy
tem, and~ii ! if r,n, the system~4! is called a partially
linearizable nonlinear system. In addition, if the dynami
subsystemV̇15j(0,V) is asymptotically stable, we say tha
the system~4! is minimum phase@7#. The two kinds are as
follows.

~1! r5n ~such as Duffing oscillators!. Equation~4! has
the following canonical form (zi5ei5yi2xi):

żi5zi 11 , 1< i<n21,..., żn5A~Z!1u, y5w~Z!,
~5!

whereA(•) represents systems’ structure information.
~2! r,n ~such as Chua’s and Lorenz systems!.

Now the synchronizing error system cannot be tra
formed into the form as Eq.~5!. But several chaotic system
are so-called minimum phase, that is, the zero dynam
j(0,V) converges to an attractor. In other words, the clo
system is internally stable@7,11,12#. From the control view-
point this is a strong assumption. But this is reasonable
the boundness of chaotic attractor in state space and th
teraction of all the trajectories inside the attractor. So wh
we have taken actions to achieve limzi→0, i 51,2,...,r, the
part j(Z,V)→j(0,V)→0 asymptotically for the so-called
minimum-phase character~see Appendix A for an illustrative
example!. This is why in many cases, we only need to sy
chronize one or part of states and the others will be sync
nized automatically. So we only consider the condition or
5n.
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III. THE APPLICATION OF SLIDING MODE CONTROL
DESIGN IN CHAOTIC SYNCHRONIZATION

For the synchronizing error system~5!, we have two as-
sumptions:~1! only z1 is measurable and~2! A(•) is uncer-
tain. The first assumption is realistic. For instance, in
secure communication case, only the transmitted signal (x1)
and receiver signal (y1) are available for feedback from
measurements@11#. Concerning the second assumption, w
claim that it is a general and practical situation because
termA(•) involves the uncertainties in the master as well
slave system. The sources of such uncertainties could be
rameter mismatching, unknown initial conditions, or stru
tural differences between models of master and slave
tems@13#.

The aim of synchronization under these assumptions i
design a physically realizable controlleru to achieve limzi
→0, i 51,2,...,n. Using the concept of extended systems,
standardized state-space equation of the error states@Eq. ~5!#
can be obtained as

żi5zi 11 , 1< i<n21, żn5zn1 i , żn115J~Z,u!1u̇,
~6!

where

J~• !5 (
k51

n21

zk11]kA~• !1~A~• !1u!]nA~• !,]kA~• !

5]A/]zl , k51,2,...,n.

Here we lump the systems’ uncertain informationA(•) into a
new statezn11 . According to sliding mode control design
the sliding surface is defined as@14#

S5zn112z0~n11!1E
0

t

(
j 51

n11

cjzidt50, ~7!

wherez0(n11) is the initial state ofzn11 . Equation~7! can
also be formulated as

żn1152 (
j 51

n11

cjzj ~8!

with the initial conditionzn11(0)5z0(n11) . Therefore the
sliding mode dynamics~the desired dynamics! can be de-
scribed as

żi5zi 11 , 1< i<n, żn1152 (
j 51

n11

cjzj . ~9!

Or in a matrix equation form asŻ5AZ, where Z
5(z1 ,...,zn11)T,

A5F 0 1 0 ¯ 0

0 0 1 ¯ 0

] ] ]

2c1 2c1 ¯ ¯ 2cs11

G , ~10!
0-2



y
g

he

e
n-

n,
wo
tio

t-

lting

t of

ica-
the
be
we

a-
ate

iz-
-

m

be
be

e

SYNCHRONIZING CHAOTIC DYNAMICS WITH . . . PHYSICAL REVIEW E65 046210
initial states beingZ(0)5@z1(0),...,zn11(0)#T.
The design ofcj , j 51,...,n11 can be determined b

choosing the eigenvalues ofA such that the correspondin
characteristic polynomial equation: p(n11)5sn11

1cn11s91¯1c1 is Hurwitz.
According to sliding mode control design, we use t

reaching law introduced by Gaoet al. as @15#

Ṡ5aS2b sgn~S!, ~11!

where 0<a,1. sgn(•) denotes the signum function and th
switching gainb.0 is determined such that the sliding co
dition is satisfied and sliding mode motion will occur.

From Eq.~7! and Eq.~11!, it can be found that

aS2b sgn~S!5 żn111 (
j 51

n11

cjzj ~12!

or, alternatively

żn115J~Z,h,u!1u̇5aS2b sgn~S!2 (
j 51

n11

cjzj . ~13!

So the differential equation of control signalu is

u̇5aS2b sgn~S!2 (
j 51

n11

cjzj2J~Z,h,u!, ~14!

which results in

u~ t !5E
0

tFaS2b sgn~S!2 (
j 51

n11

cjzj2J~Z,h,u!Gdt.

~15!

In general, the initial state of the controlu is zero. Here a
large b is important for the realization of synchronizatio
which is associated with the system information of the t
chaotic systems. We can qualitatively analyze this ques
with Lyapunov theory as follows.

Substituting control law~14! into the extended system~6!,
the closed-loop system dynamical can be described as

żi5zi 11 , 1< i<n21, żn5zn11 ,

żn115aS2b sgn~S!2 (
j 51

n11

cjzj , ~16!

Define the Lyapunov function asV5 1
2 S2, then its first de-

rivative with respect to time is

V̇5SS żn111 (
j 51

n11

cjzj D
5S@aS2b sgn~S!#

5aS22babs~S!<abs~S!@abs~S!2b#. ~17!

From Eq. ~7!, we know that S5L(z1 ,...,zn11)
5M (e1 ,...,en)5N(X,Y). For the boundness of chaotic a
tractor, we know thatS is bounded. So a large enoughb will
04621
n

lead toV̇<0. Here we get the same conclusion as that in@9#.
In many situations, conditionV̇<0 can be satisfied by
choosing a large enough switching gainb. If system uncer-
tainties can be estimated more accurately, then the resu
control input will be more accurate@8#.

From Eqs.~7! and ~15!, we know the control law is not
physically realizable because it requires the measuremen
the statez1 , i 51,...,n ~that is, the measurement ofX,Y! and
the system structure informationJ~•!, which is a very strin-
gent demand for the literature of chaotic secure commun
tion. In order to increase the security of communication,
least possible information about the transmitter should
contained in the communication channel. In this paper,
assume that onlyx1 is available in receiver, that is, onlyz1 is
measurable andJ~•!, which represents the structure inform
tion, is uncertain. So a special way must be used to estim
J~•! and zi , i 52,...,n based on the available signal~z1 in
this paper! to make the controllers~7! and ~15! physically
realizable. Based on the extended state observer theory@11#,
excavating information wrapped in measurable synchron
ing error (z1), we use the following ESO to solve this prob
lem:

ẑ̇15 ẑi 112u1f1~ ẑ12z1!, 1< i<n21, ẑ̇n5 ẑn11

2unfn~ ẑ12z1!, ẑ̇n1152un11fn11~z#12z1!.

~18!

Defining the estimating error asv15 ẑ12z1 , v25 ẑ2
2z2 ,...,vn115 ẑn112zn11 , we get the following system:

v i5v i 112u if i~e1!, 1< i<n21, v̇n5vn11

1unfn~e1!, v̇n1152J~• !2un11fn11~e1!

~19!

~assumeu50!. Appropriately choosing parameteru i and
function f i(•) ( i 51,...,n11), v1 will be stabilized at zero.
Then Ẑ5( ẑ1 ,...,ẑn) and ẑn11 will converge tozi ,i 51,...,n
and J~•!, respectively. Here we choose the following for
@11#:

u i5L8l i , f i~ ẑ12z1!5@abs~ ẑ12z1!!p sgn~ ẑ12z1!,

p.0, i 51,2,...,n, ~20!

whereL is the so-called high-gain parameter, which can
interpreted as the uncertainties estimation rate and often
chosen as a constant@7,11#. In order to determinel i , we
define the variables,

y15L9@abs~ ẑ12z1!#p sgn~ ẑ12z1!,

y i5Ln1121~ ẑi2z1!, 1, i<n,

yn115~ ẑn112zn11!.

Notice that ẏ15L9@abs( ẑ12z1)sgn(ẑ12z1)#(ẑ12ż1), where
superscript@•# means first derivative of time. From th
0-3
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boundness of chaotic attractor, we know thatz1 is bounded.
In order to achieve the tracking ofz1 , ẑ1 must be bounded
too. So we can conclude that@abs( ẑ12z1)sgn(ẑ12z1)# is
bounded. Without loss of generality, assuming its upper li
is x, which can be chosen as a large enough number, the
get ẏ1<L9x( ẑ̇12 ż1). So we have the following ‘‘estimating
error’’ system:

yG 5LT~x,l1 ,...,ln11!ȳ1V~• !, ~21!

where ȳ5(y1 ,...,yn11)T, V(•)5@0,0,...,J#T, and T is as
follows:

T~x,l,...,ln1 i1!5F 2l1x x 0 ¯ 0

2l2 0 1 ¯ 0

] ]

2ln 0 0 ¯ 1

2ln11 0 0 ¯ 0

G .

~22!

After choosingx according to experience, we choose t
constantsl i , 1< i<n11 in such a way thatT(•) has all its
eigenvalues in the left-half complex plane. SinceX,Ybelong
to some chaotic attractor, thenA(•) in Eq. ~5! is a bounded
function. HenceJ~•! also is bounded function. After choos
ing properl i , 1< i<n11 so that all eigenvalues ofT(•)
are located in left-half complex plane, we can conclude t
lim y i→0, 1< i<n11 @7,11,12#. That is, the ‘‘estimating er-
ror’’ systemȳ is globally asymptotically stable at zero, whic
implies thatẑ1→z1 , 1< i<n11. So we can get the infor
mation of unmeasurable state fromẑi , 1< i<n and model
uncertainties fromẑn11 . Note that in Eq.~18!, ẑn11 repre-
sents the system model uncertaintiesJ~•!, so zn11 in Eq.
~15! is equal toA(•)1u5 ẑn111u. Then Eqs.~7! and ~15!
become

S5 ẑn111u; ẑ~n11!1E
0

i F (
j 51

n

cj ẑj1cn11~ żn111u!Gdt,

~23!

u~ t !5E
0

i H aS2b sgn~S!2F (
j 51

n

cj ẑj1cn11~ ẑn111u!G
2 ż̂n11J dt. ~24!

Notice that control law~23! and~24! only use the estimation
of structure information~by means ofẑn11! andŻ, which are
provided by estimator~18!. And the dynamical compensato
~18! only uses the measurable synchronizing error~z1 in this
paper!. So Eqs.~23! and ~24! neglect the system uncertain
ties and are more physically realizable than Eqs.~7! and~15!
do. After the complete synchronization of two systems, ma
ways can be used to transmit information, such as addi
signal masking@17#, inverse system masking~ISM! @18#, and
so on.
04621
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IV. NUMERICAL STUDIES

A. Synchronization of two strictly different systems

In this section, the synchronization of Duffing and Va
der Pol oscillator is presented to show the effectiveness
this design mentioned above.

The two order master Duffing system is described as
lows:

ẋ15x2 ,

ẋ251.8x120.1x22x3
111.1 cos~0.4t !. ~25!

The same order slave system Van der pol@7# oscillator is
as follows:

ẏ15y2 ,

ẏ2520.1~12y1!y22y1
310.3 cos~1.0t !1u, ~26!

where u is the controller needed to be chosen. From E
~25! and ~26!, the synchronizing error dynamical (y1
2x1 ,y22x2) can be described as the canonical form

ė15e2 ,ė25Q1u, ~27!

where Q520.1(12y1)y22y1
310.3 cos(1.0t)21.8x1

10.1x21x3
121.1 cos(0.4t) contains two systems’ mode

difference, which is unknown to us. So the extended s
observer@Eq. ~18!# can be described in the following form

@ Ẑ5( ẑ1 ,ẑ2 ,ẑ3)T#:

ż̂15 ẑ22Ll1~abs~ ẑ12z1!!p sgn~ ẑ12z1!,

ż̂25 ż̂32L2l2~abs~ ẑ12z1!!p sgn~ ẑ12z1!, ~28!

ż̂352L3l3~abs~ ẑ12z1!!p sgn~ ẑ12z1!,

where ẑ3 represents the structure differenceQ. Hence the
sliding control law~23! and ~24! can be described as

S5 ẑ31u2 ż3~0!1E
n

t

@c3~ ẑ31u!1c2ẑ21c1ẑ1#dt,

~29!

u~ t !5E
a

t

@aS2b sgn~S!2@c3~ ẑ31u!1c2ẑ21c1ẑ1#

2 ż̂3#dt. ~30!

Here we randomly choose the systems’ initial conditi
~0.3,0.5!, ~1,0.61! for Duffing and Van der Pol, respectively
The initial condition for (ẑ1 ,ẑ2 ,ẑ3) is randomly chosen as~0,
0, 0.5!. The initial condition for Eq.~29! is S(0)50 and
u(0)50 for Eq. ~30!. Here we choosex54. According to
the parameter-choosing scheme mentioned above, we ch
parameters as follows: the switching gaina50.1, b50.4,
the parameter forci ,i 51,2,3 is as@c3 ,c2 ,c1#5@165,65,3#
then engivalues ofA in Eq. ~10! are 22.5814, 20.2093
67.9924i , the high gain isL510, the parameter ofl1 ,i
0-4
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FIG. 1. Simulation results.~a! (x1 ,y1) vs
time; ~b! (x2 ,y2) vs time;~c! ( i 1 ,i 2) vs time;~d!
(x12y1) vs time, (i 12 i 2) vs time when b
50.01.
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51,2,3 is@l1 ,l2 ,l3#5@1,2,3# so that engivalues of matrix
~22! are22.6850,20.657562.0092i , andp50.5. The con-
trol was activated att52. We use the simulink ofMATLAB 5.3
to carry out this numeric simulation. Figures 1~a! and 1~b!
show the simulation result.

After the synchronization of transmitter and receiver,
can use many ways to transmit information@@17,18#, and
references therein#. Here we use ISM to discuss it simpl
We add information to the right-hand side ofx2 . Then the
second function of Eq.~25! is

ẋ251.8120.1x22x1
31 i 1~ t !, ~31!

where i 1(t) is the signal to be transmitted. Here we choo
i 1(t)51.1 cos(0.4t) simply. According to ISM@18#, we have
the demodulator as

i 2~ t !5 ẋ221.8x110.1x21x1
3, ~32!

where i 2(t) is the demodulated signal. After the synchron
zation of the two systems, we know thaty2⇒x2 andx1 is the
driving signal that is available at the receiver side. So
demodulator~32! can be described as the realizable form

i 2~ t !5 ẏ221.8x110.1y21x1
3. ~33!

The simulation result is shown in Fig. 1~c!, which reveals the
good demodulation. From Eq.~17! we know that largeb is
needed so that the sliding condition is satisfied and slid
04621
e
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mode motion will occur, which guarantees the synchroni
tion and signal demodulation. Figure 1~d! shows that syn-
chronization is not achieved whenb50.01 and other param
eters are the same as above. In the simulation we found
the largerb is, the better the synchronization and signal d
modulation. But to find out whether there exists quantitat
relation between them needs further work.

B. Synchronization of systems with parameter mismatching

In this section, we study the synchronization of two L
renz systems with parameter mismatching. For two Lore
systemsX1,25(x1,2,y1,2,m1,2)

T as follows:

ẋ1,25s1,2~y1,22x1,2!, ẏ1,25r 1,2x1,22y1,22x1,2m1,2,

ṁ1,25x1,2y1,22c1,2m1,2, ~34!

where subscript 1 means the transmitter and 2 receiver.s, r,
c are system parameters. Controlu is added on the right-
hand side ofx2 . So we get the following synchronizing erro
system:

ė15D f 11u, ė25D f 2 , ė35D f 3 , ~35!

where DF5(D f 1 ,D f 2 ,D f 3) denotes the uncertainties o
these two systems~parameter mismatching!. So the canoni-
cal form @Eq. ~4!# can be described as
FIG. 2. Simulation results.~a!
(x12x2) vs time; ~b! (y1 ,y2) vs
time; ~c! (m1 ,m2) vs time.
0-5
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żr5h, ḣ5J~z,h,u!, V̇5j~z,V!, ~36!

wherezr5c1 , V5(e2 ,e3), r51. It is easy to see that sub
systemj(0,V) is the so-called minimum-phase. Let us a
sume thatx1 is the driving signal, soz1 is measurable. Then
we get the extended state observer@Eq. ~18!# as the follow-
ing form @ Ẑ5( ẑ1 ,ẑ2)T#:

ż̂15 ẑ22Ll1@abs~ ẑ12z1!#p sgn~ ẑ12z1!,

ż̂252L2l2@abs~ ż12z11!#
p sgn~ ẑ12z1!, ~37!

whereẑ2 represents the uncertaintyD f 1 . So the sliding con-
trol law @Eqs.~23! and ~24!# can be described as

S5 ẑ21u2 ẑ2~0!1E
0

t

@c2~ ẑ21u!1c1ẑ1#dt, ~38!

u~ t !5E
0

t

@aS2b sgn~S!2$c2~ ẑ21u!1c1ẑ1%2 ż̂2#dt.

~39!

Here we choose initial conditionS(0)50, u(0)50. Initial
condition for the two Lorenz systems are~0.4,0,0! and
~0.5,0.87,1.1!. Initial condition for (ẑ1 ,ẑ2) is randomly cho-
sen as~0,0.5!. Let x54, L510, p50.5, @c1 ,c2#5@56,4#,
@l1 ,l2#5@1,2#, a50, b50.3, and s1510, b158/3, r 1
550, s259, b258.5/3, r 2552. In order to strengthen th
effect of control, we useu8510u instead ofu in this simu-
lation. The control was activated att52. Simulation results
are shown in Fig. 2.

V. CONCLUSIONS

In this paper, a sliding mode control for synchronizin
chaotic systems with uncertainties is proposed. Based o
rigorous mathematical analysis and Lyapunov stabi
theory, a sliding mode controller is designed such that t
chaotic systems with uncertainties can be synchronized
make this control physically reliable, a kind of extended st
observer is used to estimate the systems’ model differe
and the immeasurable states based on the measurable
chronizing error. Duffing and Van der Pol oscillators and tw
Lorenz systems were used as examples to verify and vis
ize this strategy. Simulation results demonstrate that the
posed design is able to achieve the synchronization of
chaotic systems of the same order with little system inform
tion. Both analysis and simulations reveal that the propo
sliding mode control design and the ESO have great pote
.
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for synchronizing two chaotic systems with uncertaintie
which is significant for secure communication. Furth
works, such as the quantitative relationship betweena, b and
synchronization performance, the use of this scheme in c
munication and so on, are going on.
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APPENDIX A: INTERNAL STABILITY OF THE
SYNCHRONIZING ERROR SYSTEM OF TWO

LORENZ SYSTEMS

Let us consider the two Lorenz systems as follows:

ẋ1,25s~y1,22x1,2!, ẏ1,25rx1,22y1,22x1,2m1,2,

ṁ1,25x1,2y1,22cm1,2, ~A1!

where subscript 1 represents the master system, and 2
slave. The control is added toxt . The synchronizing error
dynamical is as follows~e15x12x2 ; e25y12y2 ; e15m1
2m2!:

ż15Q~• !1u,v̇15rz12v12z1v2 , v25z1v12cv2 ,

y5z1 , ~A2!

wherez15e1 , V5(v1 ,v2)T5(e2 ,e3) r , r51. So we get

V̇5AV1BS, ~A3!

where

A5F21 2z1

z1 2c G , B5F r
0G , S5z1 .

For Lorenz system, the following inequation is satisfied@16#:

x2~ t !1y2~ t !1@m~ t !2r 2s#2<~s1r !2K2, ~A4!

whereK25 1
4 1(c/4)max(s21,1), soz1 is bounded. For ap-

propriate parameterc such thatA has all its eigenvalue in the
left-half complex plane, then Eq.~A3! is asymptotically
stable, that is,j(0,V) converges to an attractor. For oth
chaotic systems, such as Chua’s circuit, etc., because o
character of chaotic attractor, we can draw the sa
conclusion.
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